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Introduction to quantum error correction
By A. M. Steane

Department of Atomic and Laser Physics, Clarendon Laboratory,
Parks Road, Oxford OX1 3NP, UK

An introduction to quantum error correction (QEC) is given, and some recent devel-
opments are described. QEC consists of two parts: the physics of error processes
and their reversal, and the construction of quantum error-correcting codes. Errors
are caused both by imperfect quantum operations, and by coupling between the
quantum system and its environment. Any such process can be analysed into a sum
of ‘error operators’, which are tensor products of Pauli spin operators. These are
the analogues of classical error vectors. A quantum error-correcting code is a set
of orthogonal states, ‘quantum codewords’, which behave in a certain useful way
under the action of the most likely error operators. A computer or channel which
only uses such states can be corrected by measurements which determine the error
while yielding no information about which codeword or superposition of codewords is
involved. Powerful codes can be found using a construction based on classical error-
correcting codes. An analysis which allows even the corrective operations themselves
to be imperfect leads to powerful and counter-intuitive results: the quantum coher-
ence of a long quantum computation can be preserved even though every qubit in
the computer relaxes spontaneously many times before the computation is complete.

Keywords: error-correcting code; syndrome; noise; CSS code;
parity check; error operator

1. Introduction

The concept of error correction is a central component of classical information the-
ory, and similarly quantum error correction (QEC) is one of the foundation stones
of quantum information theory. The basic principles of QEC were only recently dis-
covered, dating from 1995, but progress has been rapid since then, so that now the
subject is well established and covers a large number of concepts and mathemat-
ical techniques. This paper will introduce the basic concepts of QEC mostly at a
level suitable for readers unfamiliar with the subject, with some recent developments
mentioned at the end.

The existence of quantum error-correcting codes was discovered independently
by Shor (1995) and Steane (1996a). Shor proved that nine qubits could be used
to protect a single qubit against general errors, while Steane described a general
code construction whose simplest example does the same job using seven qubits.
However, it was not clear from these early works whether the methods could be
generalized. QEC was established as a general and powerful technique in the sub-
sequent papers of Calderbank & Shor (1996) and Steane (1996b) in which general
code constructions, existence proofs and correction methods were given. Thereafter,
Knill & Laflamme (1997) provided a more general theoretical framework, describing
requirements for quantum error-correcting codes (§ 3), and measures of the fidelity
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1740 A. M. Steane

of corrected states. They, and independently Ekert & Macchiavello (1996), derived
the quantum Hamming bound (see § 5 a). The close relationship between entangle-
ment purification (Deutsch et al . 1996; Bennett et al . 1996a) and quantum error
correction was discussed by Bennett et al . (1996b). The theory of the construction
of quantum error-correcting codes was greatly advanced by Gottesman (1996a) and
Calderbank et al . (1997); their work permitted many new codes to be discovered
(Gottesman 1996a, b; Calderbank et al . 1996, 1997; Steane 1996c, d). Codes whose
efficiency exceeds (by a small amount) the possibilities of such general methods have
been discovered (Shor & Smolin 1996; Rains et al . 1997). The subject reached a
degree of maturity with the discovery by Shor & Laflamme (1996) of a beautiful
quantum analogue to the classical MacWilliams identities, which provide constraints
on codes and fidelity measures. An important issue which remains unresolved is the
definition of the capacity of a quantum channel, though much useful work has been
done (see, for example, Calderbank & Shor 1996; Steane 1996b; Knill & Laflamme
1997; Bennett et al . 1996b, 1997; Lloyd 1997; Schumacher & Nielsen 1996; Barnum
et al . 1996; van Enk et al . 1997, and the other papers in this volume).

The results of quantum error correction are powerful and highly counter-intuitive.
For example, they permit a quantum computer to produce the correct output, involv-
ing a large and complicated quantum interference between its constituent qubits, even
though every qubit in the computer relaxes spontaneously many times during the
computation!

2. The problem of stability in quantum computation

It is well known that quantum computers are highly sensitive to noise and impre-
cision. By noise we mean extraneous coupling between the computer and all other
systems, normally referred to as the ‘environment’, and by imprecision we mean
inaccuracy in the operations (quantum gates) which are deliberately applied to the
computer in order to make it compute. The latter case can be regarded as noise
affecting all the qubits involved in the gate, followed by a perfect implementation
of the gate. This instability problem has been studied in detail by various authors
(Unruh 1995; Palma et al . 1996; Chuang et al . 1995; Plenio & Knight 1996, 1997),
but the essential cause of it is easy to discern.

Quantum computation relies on the manipulation of quantum states in such a way
that coherence is preserved. The word ‘coherence’ has many meanings in physics, but
in this context it means essentially that if a computer can be in states such as |Ψ1〉
and |Ψ2〉, then in the course of a computation it might adopt the state

|A〉 =
1√
2

(|Ψ1〉+ eiφ|Ψ2〉). (2.1)

To preserve coherence, we require not only that |Ψ1〉 and |Ψ2〉 are uncorrupted by
noise and imprecision, but also that the value of the phase φ in the superposition is
well defined. However, the phase becomes undefined either if an imprecise operation
produces rotation of the state through an unknown angle of order π, or if the coupling
to the environment produces an entangled state such as (|Ψ1〉|e1〉+ eiφ|Ψ2〉|e2〉)/√2,
where |ei〉 are states of the environment and 〈e1 | e2〉 = 0.

Suppose there are K qubits in the computer, where we take the qubits to be
physically separate systems such as atoms. Quantum computation is only more effi-
cient than classical computation if states of the form |A〉 feature predominantly,
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such that O(K) of the qubits are involved in the interference (e.g. |Ψ1〉 = |000 . . . 0〉,
|Ψ2〉 = |111 . . . 1〉). Therefore, at any stage of the computation the computer fails if
any one of the K qubits ‘decoheres’, that is, becomes entangled with the environment
or randomly precesses. If the probability for a decohering process is p for any qubit,
during the time it takes to perform one computational step, and there are S steps in
the whole computation, then the probability that the quantum algorithm succeeds
is of order (1− p)KS ' 1−KSp. For a successful computation, we therefore require
p 6 O(1/KS)†.

To get a feel for the size of a quantum computer which might be needed to do
powerful and versatile quantum computing, we take as an example the values of K
and S required for Shor’s factorization algorithm (Shor 1994) working to factorize
a 130-digit number (which is currently the limit for classical computers). We need
approximately L = 400 qubits to store the number to be factorized, and a further
4L = 1600 as workspace (Beckman et al . 1996), giving K ' 2000. The algorithm
requires S ' 300L3 ' 2× 1010; therefore, for success, the probability of decoherence
per qubit per computational step must be p < 2× 10−14.

To estimate the rate of decoherence in real systems is a difficult task, but it is safe
to say that it is extremely hard (perhaps impossible) to find any system which could
form a quantum computer in which the probability of an unwanted process such as
spontaneous emission is less than ca. 10−5 or possibly 10−6 per computational step.
Hence quantum systems are seven or more orders of magnitude too noisy to permit
large-scale quantum computation. This is not to say that, for example, 104 operations
on 100 qubits might not permit very valuable quantum computations (this is an open
question), but it rules out most quantum algorithms.

The above conclusion leads us to ask why classical computers are as stable as they
are. A single bit error in a classical computation would often be sufficient to cause
failure, yet these devices are phenomenally stable, routinely performing numbers of
operations of the order of Avogadro’s number without a single bit error. The stability
of classical computers comes not from a precise construction and isolation, but from
the fact that they are insensitive to noise. This property can be identified ultimately
as a property of the basic components: the electronic switches. Just as a mechanical
switch is highly unlikely to spontaneously toggle, its electronic counterpart the flip-
flop remains stable in one of two configurations, until toggled by an electrical impulse
which is large compared to the noise in the circuit. This stability derives from a
judicious combination of amplification and dissipation: in the flip-flop, transistors
perform the role of amplifiers, in the mechanical switch a spring serves this role.
The amplifier provides a restoring force to return the switch to one of its two stable
configurations, but dissipation is also needed since in its absence the switch would
oscillate and eventually toggle.

Stability in complex processes, whether computers or other man-made devices, or
biological systems, is always brought about through amplification and dissipation.
However, an unknown quantum state cannot be amplified (‘no-cloning’ theorem,
Wootters & Zurek 1982; Dieks 1982; Glauber 1986; Steane 1998) and dissipation is
by definition irreversible and hence incompatible with unitary quantum evolution.
Therefore these methods cannot be used in quantum computers. For this reason it was
thought that it would be impossible to actively correct a quantum computer while

† It is only necessary for the probability of success to be greater than 1
2 for the computer to be useful,

since then repetition of the whole computation can be used to generate a reliable result efficiently.
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1742 A. M. Steane

it was running, and the problem of instability of quantum computation appeared
insurmountable.

3. Principles of quantum error correction

The basic ingredients of the theory of quantum error correction are the quantum
states we wish to consider, and the noise processes we wish to correct. The the-
ory can be presented in several equivalent ways, depending on whether one chooses
to work with density matrices, state vectors or operators. We adopt the following
mathematical approach to describe the coupling between a quantum system and its
environment:

|e〉|φ〉 →
∑

s

|es〉Ms|φ〉, (3.1)

where |e〉 (|φ〉) is the initial state of the environment (the system), the final envi-
ronment states |es〉 are not necessarily orthogonal or normalized, and the operators
Ms acting on the system are unitary. Tensor product symbols ⊗ are not written in
order to keep the equations uncluttered. So far there is no loss of generality. Since
the environment cannot be controlled, the noise process (3.1) is irreversible.

To perform quantum error correction, we now couple the system q to another
system called an ancilla a, prepared in some known state |0〉a. The unitary interaction
A between q and a is carefully arranged to have the following property:

A(|0〉aMs|φ〉) = |s〉aMs|φ〉, (3.2)

where the states |s〉a of the ancilla are orthonormal (but see below), for all Ms
appearing in (3.1), where this is possible, or else for the dominant terms in (3.1). This
interaction is termed syndrome extraction; the syndrome s will give us information
about the noise. It is very significant that after syndrome extraction the state of the
ancilla |s〉a depends on the noise, but not on the quantum state |φ〉 to be corrected.
This is a highly unusual property; it will only be possible for some states and for
some noise terms. The set of error operators Ms for which syndrome extraction works
will be called the set S of correctable errors. A major part of the theory of QEC is
to identify the best syndrome extraction operators.

Applying A to the noisy state on the right-hand side of (3.1), we obtain

A
∑

s

|es〉|0〉aMs|φ〉 =
∑

s

|es〉|s〉aMs|φ〉. (3.3)

Now measure the ancilla in the basis {|s〉a}. This projects the ancilla onto one par-
ticular state |s〉a, and yields as a measurement outcome the value of s. Hence the
whole system q plus a plus the environment is projected onto |es〉|s〉aMs|φ〉, and
furthermore we know the value of s. However, s is in one-to-one correspondence with
Ms, so we can deduce Ms from s. Armed with this knowledge, we apply M−1

s to q
by means of a sequence of quantum gates, thus producing the final state

|es〉|s〉a|φ〉. (3.4)

The state of q has now been corrected, the state of the environment is immaterial, and
we can reprepare a in |0〉a for further use. Actually, the requirement on s is slightly
less restrictive than was just stated: rather than a one-to-one correspondence between
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s and Ms, if a set of error operators {Mj} produces the same syndrome s, then it
is sufficient that there exists a corrective operation M̃s in one-to-one correspondence
with s, satisfying 〈φ′|M̃sMj |φ〉 = 〈φ′ | φ〉 for all states |φ〉, |φ′〉 under consideration,
for all errors {Mj} of syndrome s (cf. equation (3.7) below).

It is not strictly necessary to measure the ancilla, since after syndrome extrac-
tion one could arrange a further unitary interaction C between q and a, defined by
C(|s〉a|φ〉) = |s〉aM̃s|φ〉. The final state would then be |φ〉∑s |es〉|s〉a. The entangle-
ment between q and the environment is thus transferred to an entanglement between
a and the environment. However, measurement of the ancilla has practical advantages
compared to the use of CA.

The complete unitary operation

R(|α〉Ms|φ〉) = |αs〉|φ〉 (3.5)

is called recovery, where |α〉 and |αs〉 are states of any relevent systems other than
q, including the environment, an ancilla and any measuring apparatuses involved.

The central problem of quantum error correction is to identify sets of states |φ〉,
and the syndrome extraction operator A, which permit recovery for the dominant
noise terms Ms in the system under consideration. Note that it is sufficient to find
an orthonormal set of recoverable states in order to have a recoverable Hilbert space.
This is a subspace of the total Hilbert space available to the system. Error correction
can be understood as a projection of the system onto the recoverable Hilbert space,
or onto an orthogonal Hilbert space, followed by rotation back to the recoverable
Hilbert space in the latter case.

The recoverable Hilbert space is spanned by an orthonormal set of quantum states
{|u〉} called quantum codewords. It is not hard to prove that the syndrome extraction
and recovery operations described above are possible if and only if the codewords
have the following properties, for all {Ms ∈ S} (Knill & Laflamme 1997; Bennett et
al . 1996b):

〈u|M†iMj |v〉 = 0, (3.6)

〈u|M†iMj |u〉 = 〈v|M†iMj |v〉, (3.7)

for 〈u | v〉 = 0.
To illustrate the above ideas, we will now describe a simple example using a sys-

tem q of three qubits, and an ancilla a of two qubits. For illustrative purposes, we
restrict the noise to the simple case that the only operators Ms appearing in (3.1)
are the identity, and Pauli σx operators acting on a single qubit in q. In this case
there are two orthonormal recoverable states, namely |000〉 and |111〉, so we have a
two-dimensional recoverable Hilbert space, which is sufficient to store one qubit of
quantum information. A general recoverable state of q is |φ〉 = a|000〉+ b|111〉 where
a and b are general coefficients. The noise process entangles q with its environment,
producing the noisy state

|e0〉(a|000〉+ b|111〉) + |e1〉(a|001〉+ b|110〉)
+ |e2〉(a|010〉+ b|101〉) + |e3〉(a|100〉+ b|011〉).

The syndrome extraction operator A consists of four controlled-NOT or XOR gates,
in which q acts as control and a as target (see figure 1). After this syndrome extrac-
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Figure 1. Example syndrome extraction for the three-bit quantum code {|000〉, |111〉}. The
upper three qubits are the system q, the lower two are the ancilla a.

tion, the total state of environment, system and ancilla is

|e0〉|00〉a(a|000〉+ b|111〉) + |e1〉|01〉a(a|001〉+ b|110〉)
+ |e2〉|10〉a(a|010〉+ b|101〉) + |e3〉|11〉a(a|100〉+ b|011〉).

We now measure a. If the measurement result is 00, then by chance the system has
been projected back onto the noise-free state and nothing further is necessary. If the
result is 01, 10, or 11, then we apply the σx operator to, respectively, the first, second,
or third qubit in q. After this, the state has been returned to its noise-free form |φ〉,
irrespective of the values of a and b, and irrespective of which syndrome was obtained.
Alternatively, the corrective operation can be applied without measurement by means
of Toffoli (controlled-controlled-NOT) gates in which a acts as control and q as target.
This three-bit code is analysed more thoroughly in Steane (1996b).

4. Classical error correction

To tackle the central problem of QEC, that of identifying recoverable states (quan-
tum codewords) and the syndrome extraction operator, we first need to understand
classical error correction. This is a large subject; a full introduction may be found
in many readily available textbooks (Hamming 1986; MacWilliams & Sloane 1977;
Jones 1979; Hill 1986). Only the most simple ideas will be given here, but they will
be sufficient to open the way to powerful QEC methods.

Classical communication can be considered without loss of generality to consist
in the transmission of binary words from A to B. A classical error-correcting code
is a set of words C = {u}. We will restrict attention to the case that all the words
have the same length (number of bits) n. Errors consist of bit flips. To treat errors
and their correction, it is convenient to regard each binary word as an n-component
vector in an n-dimensional vector space. This is a binary vector space since the
components of the vectors can only be 0 or 1. Vector addition w = u + v is carried
out by adding the components modulo 2, so is equivalent to the EXCLUSIVE-OR
operation carried out bitwise between the words. In this treatment, a general error
process can be written u→ u′ = u+ e where e is an n-component error vector which
specifies which bits of u are flipped by the noise. The goal of error correction is to
recover u from u′.

The weight wt(u) of a vector is defined to be the number of non-zero coordi-
nates, e.g. wt(11001000) = 3. The distance d(u, v) between two vectors is the num-
ber of places where they differ, that is, where one has a 1 and the other a 0, e.g.
d(11001000, 01001100) = 2. One may show that d(u, v) = wt(u+ v).
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Figure 2. Example classical error-correcting code, the [32, 5, 16] Reed–Muller code. The zeros
and ones of the 32 codewords are represented by blank and filled squares.

A given error-correcting code C allows correction of a certain set S ≡ {ei} of error
vectors. The correctable errors are those which satisfy

u+ ei 6= v + ej , ∀u, v ∈ C (u 6= v). (4.1)

The case of no error, e = 0, is included in S, so that error-free messages are ‘cor-
rectable’. Equation (4.1) is the classical analogue of the conditions (3.6), (3.7) on
quantum codewords. To achieve error correction, we use the fact that each message
u is corrupted to u′ = u + e for some e ∈ S. However, the receiver can deduce u
unambiguously from u + e since by condition (4.1), no other message v could have
been corrupted to u+ e, as long as the channel only generates correctable error vec-
tors. In practice, a noisy channel causes both correctable and uncorrectable errors,
and the problem is to match the code to the channel, so that the errors most likely
to be generated by the channel are those the code can correct.

An example classical error-correcting code is shown in figure 2. This is the [32, 5, 16]
Reed–Muller code. The notation [n, k, d] indicates that the length of the codewords
is n bits, there are 2k of them, and each word differs from all the others in at
least d places. The parameter d is called the ‘minimum distance’ of the code. This
code was used to send video signals back from the Mariner space probe, as follows.
The intensity level for each pixel in the video signal is represented by a five-bit
binary number m. This five-bit message is ‘encoded’ into 32 bits by choosing the mth
codeword, um, and sending that. The receiver receives u′ = um+e, where e represents
the errors. If the errors are most likely to affect few qubits, then the best policy of the
receiver is to assume that the codeword originally sent was whichever one most closely
resembles u′, that is, the codeword u with the smallest d(u, u′) = wt(u + um + e).
Since all the um are at least distance d from one another, the closest vector to u′ will
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be um, whenever the error e affects fewer than 1
2d bits, which is the most likely case.

Thus the receiver correctly obtains um, from which the message m can be deduced.
So far we have described error correction by the most obvious method, that of

examining the received word u′ and deducing which sent word was most likely to
have produced it. This is permissible for classical information, which can be examined
at will, but a more subtle method is necessary for quantum information. Fortunately,
such a method is already available within classical coding theory. This is the concept
of parity checking.

All the codewords in figure 2 have even weight, i.e. an even number of ‘1’s. This
property is called even parity. A single bit error, or an odd number of errors, will
change the parity to odd. Therefore it is sufficient to evaluate the parity to be able
to know whether an even or odd number of errors has taken place. Furthermore,
all the codewords have even weight in the first 16 places, and in the last 16. Thus
further information on errors is available by calculating the parity of these subsets
of the bits. For this code there are altogether 32−5 = 27 linearly independent parity
checks satisfied by all the members of the code.

Parity checking is handled mathematically as follows. A parity check is simply
the inner product (u, v) between two binary vectors, evaluated by multiplying corre-
sponding components and summing the results (modulo 2). The positions of the 1s
in one vector determine which bits of the other vector enter into the parity check. If
the result is zero (one) the parity of the checked bits is even (odd). If u and v are
row vectors then the inner product is uvT, where ‘T’ denotes the transpose operation
(the inner product may also be written u · v).

An error-correcting code is termed linear when it has the property of closure: the
sum of any two vectors in the code is also in the code, u+ v ∈ C ∀u, v ∈ C. Such an
[n, k, d] code is completely defined by any set of k linearly independent members of
the code, which together form the k×n generator matrix G. All the other members
of the code can be generated by adding rows of G. If h · u = 0 and h · v = 0, then
h · (u + v) = h · u + h · v = 0. Therefore, if all the rows of G satisfy any given
parity check h, then so do all members of the code. It can be shown that for a linear
code there are n − k linearly independent parity checks. These together define the
(n− k)× n parity check matrix H. By definition,

HGT = 0, (4.2)

where GT is the transpose of G, and 0 is the (n− k)× k zero matrix.
We can now state the feature of classical error correction which is essential to allow

a generalization to quantum error correction: the receiver can correct the received
word u′ without obtaining any information on which word was sent. The method is
for the receiver not to examine u′ = um + e directly, but to evaluate all the parity
checks:

H(um + e)T = HuT
m +HeT

= HeT. (4.3)

The n− k component vector HeT is called the error syndrome; it has two important
properties: it depends only on the error e, not the codeword sent um, and e can be
deduced from HeT for all correctable errors e ∈ S. The former property is shown by
(4.3), the latter is easily proved by using (4.1) and counting vectors with the same
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Introduction to quantum error correction 1747

syndrome. The error syndrome therefore permits error correction without learning
anything about which codeword was sent.

Let us conclude this section with another example of a linear binary code which
will be important in what follows. It is a [7, 4, 3] code discovered by Hamming (1950).
The generator matrix is

G =


1010101
0110011
0001111
1110000

 , (4.4)

so the 16 members of the code are
0000000 1010101 0110011 1100110
0001111 1011010 0111100 1101001
1110000 0100101 1000011 0010110
1111111 0101010 1001100 0011001.

(4.5)

These have been written in the following order: first the zero vector, then the first
row of G. Next add the second row of G to the two vectors so far obtained, then add
the third row to the four vectors previously obtained, and so on. Since the minimum
distance is 3, this code permits correction of any error affecting at most 1 bit. The
parity check matrix is derived from (4.2):

H =

1010101
0110011
0001111

 . (4.6)

5. Digitizing quantum noise

So far we have identified syndrome extraction, equation (3.2), as an essential com-
ponent of QEC, and we have seen in (4.3) its classical counterpart. This hints at
how the classical and quantum cases are to be brought together. Before we do this,
we need a new and, as it turns out, advantageous method to treat noise in quantum
systems. Any interaction between a single qubit and its environment can be written
in the form

|e〉(a|0〉+ b|1〉)→ a(c00|e00〉|0〉+ c01|e01〉|1〉) + b(c10|e10〉|1〉+ c11|e11〉|0〉), (5.1)

where |e...〉 denotes states of the environment (not necessarily orthogonal) and c...
are coefficients depending on the noise. A significant insight is that this general
interaction can be written

|e〉|φ〉 → (|eI〉I + |eX〉X + |eY 〉Y + |eZ〉Z)|φ〉, (5.2)

where |φ〉 = a|0〉+ b|1〉 is the initial state of the qubit, and |eI〉 = c00|e00〉+ c10|e10〉,
|eX〉 = c01|e01〉 + c11|e11〉, and so on. The operators I,X, Y, Z are, in the basis
{|0〉, |1〉},

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −1
1 0

)
, Z =

(
1 0
0 −1

)
. (5.3)

I is the identity, X is the Pauli σx operator, Z is the Pauli σz operator, and Y ≡
XZ = −iσy. The general problem of error correction of qubits is thus reduced (Steane
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1996b) to the problem of correcting ‘bit-flip’ errors (X), or ‘phase’ errors (Z), or both
(Y ). For example, phase decoherence |e〉(a|0〉+ b|1〉)→ a|0〉|e1〉+ b|1〉|e2〉 is given by
{|eX〉 = |eY 〉 = 0, |eI〉, |eZ〉 6= 0, 〈eI | eZ〉 = 0}. Spontaneous emission,

|e〉(a|0〉+ b|1〉)→ a|e1〉|0〉+ b(|e2〉|1〉+ |e3〉|0〉), 〈e2 | e3〉 = 0, (5.4)

is given by {|eY 〉 = −|eX〉, 〈eX | eI〉 = −〈eX | eZ〉, 〈eI | eZ〉 = 〈eX | eX〉}. If the
spontaneous emission rate is Γ , then 〈eX | eX〉 = 〈eY | eY 〉 = 〈eZ | eZ〉 = 1

4(1−e−Γt),
and 〈eI | eI〉 = 1

4(1 + 3e−Γt). Thus a continuous error process is ‘digitized’ into bit
and phase errors. The continuous nature of the process enters in the norms of the
environment states; these are associated with the probability of obtaining each type
of error.

Combining equations (3.1) and (5.2), a general noise process for a set of many
qubits can be written in the form (3.1) such that each error operator Ms is a tensor
product of single-qubit operators taken from the set {I,X, Y, Z}. An example error
operator for a system of five qubits is

M = X1I2I3Z4Y5, (5.5)

where the subscripts indicate which qubit the {I,X, Y, Z} operator acts on. The
following notation will also be useful:

M = XxZz, (5.6)

where x and z are binary vectors which indicate where the X and Z operators appear
in M . For example,

X1I2I3Z4Y5 = X10001Z00011. (5.7)

The weight of a classical error vector is the number of non-zero elements, which
indicates how many bits are flipped by such an error. Similarly, we define the weight
of a quantum error operator of the general form illustrated in equation (5.5) to be
the number of elements in the product which are not equal to I. When noise acts on
different qubits independently, the most important terms in equation (3.1) are those
where the error Ms has the smallest weight. Therefore the quantum codes suitable
for correcting independent noise are those which correct all errors of weight up to a
maximum set as high as possible. It will be our task to find such codes.

(a) Quantum Hamming bound

A t-error-correcting quantum code is defined to be a code for which all errors
of weight less than or equal to t are correctable. Since there are three possible
single-qubit errors, the number of error operators of weight t acting on n qubits is
3tC(n, t). Therefore a t-error-correcting code must be able to correct

∑t
i=0 3iC(n, i)

error operators. An important class of codes is those in which condition (3.7) is
satisfied through both sides being equal to zero. Such codes are sometimes called
non-degenerate, or orthogonal, since every erroneous (or error-free) codeword Mj |u〉
is orthogonal to every other erroneous version of itself Mi|u〉 as well as to every
erroneous version of other codewords Mi|v〉. All these orthogonal states can only fit
into the 2n-dimensional Hilbert space of n qubits if

m

t∑
i=0

3iC(n, i) 6 2n. (5.8)
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Figure 3. Syndrome extraction operation for [[7, 1, 3]] CSS code. A control with several NOTs
represents several controlled-NOT operations with the same control qubit. Each of the three
qubits of the ancilla begin in |0〉 and finish in |0〉 or |1〉 accordingly as the relevant parity check
in H (equation (4.6)) is or is not satisfied. A further ancilla of three more qubits is required to
complete the syndrome, using a similar network together with R operations (see equation (7.3).

This bound is known as the quantum Hamming bound (Knill & Laflamme 1997;
Ekert & Macchiavello 1996; Bennett et al . 1996b; Gottesman 1996a). For m = 2k
and large n, t it becomes

k

n
6 1− t

n
log2 3−H

(
t

n

)
, (5.9)

where H(x) ≡ −x log2(x) − (1 − x) log2(1 − x). The rate k/n falls to zero at t/n '
0.18929.

A code with m = 2 codewords represents a correctable Hilbert space of one qubit
(it ‘encodes’ a single qubit). Putting m = 2 and t = 1 in the quantum Hamming
bound, we have 1 + 3n 6 2n−1 which is saturated by n = 5, and indeed a five-qubit
code exists; it was first discovered independently by Laflamme et al . (1996) and
Bennett et al . (1996b).

6. Quantum use of classical codes

The next stage in the argument is to use the classical syndrome extraction in a
quantum system. For this we will need to evaluate a parity check by means of unitary
operators. Suppose q is in a product state |u〉 where u is a binary vector, and we
wish to evolve a single-qubit ancilla a from the state |0〉a → |h · u〉a, where h is
a parity check vector. This is accomplished by operating a sequence of XOR gates,
with qubits in q as controls, using the single qubit a as target. There are wt(h) gates,
and the control qubits in q are those specified by the 1s in h (see figures 1 and 3).
We will write such an operation

XOR(h)
q,a |0〉a|u〉 = |h · u〉a|u〉. (6.1)

Suppose a quantum system is subject only to noise which causes ‘bit-flip’ errors,
that is the error operators in (3.1) are Ms = Xs. This is an artificial type of noise,
but is closely related to a type commonly encountered, as will be shown shortly. In
this case the quantum codewords are simply product states |u〉 in which u is a binary
vector in a classical code, u ∈ C. A general state |ψ〉 in the recoverable Hilbert space
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can be written

|ψ〉 =
∑
u∈C

au|u〉. (6.2)

The effect of noise (3.1) is

|e〉
∑
u∈C

au|u〉 →
∑

s

|es〉
∑
u∈C

auXs|u〉

=
∑

s

|es〉
∑
u∈C

au|u+ s〉. (6.3)

Note that since Xs|u〉 = |u+ s〉, the quantum codeword conditions (3.6), (3.7) are
satisfied for exactly the set {Xs} : s ∈ S where S is the set of classical errors
correctable by C (equation (4.1)).

The quantum syndrome extraction operation is obtained from the parity check
matrix H of the classical code. We use an n−k qubit ancilla, and evaluate the n−k
parity checks of the classical code, using the method described previously (6.1) and
illustrated in figure 3. This has the effect

A|0〉a|u+ s〉 = XOR(H)
q,a |0〉a|u+ s〉 = |HsT〉a|u+ s〉, (6.4)

where we used (4.3). It is here that we rely on the fact that the classical syndrome
is independent of the codeword, since then A has the correct effect in equation (6.3)
no matter what state |ψ〉 (in the recoverable Hilbert space) we are concerned with.
Recovery is completed by measuring a, deducing s from HsT, and applying X−1

s =
Xs to q.

The noise process just considered is quite unusual in practice. However, it is closely
related to a common type of noise, namely phase decoherence. Phase decoherence
takes the form (3.1) with error operators consisting of tensor products of I and Z,
so Ms = Zs. The quantum error-correcting code for this case is now simple to find
because Z = RXR, where R is the Hadamard or basis change operation

R =
1√
2

(
1 1
1 −1

)
. (6.5)

The letter H is often used for this operator, but R is adopted here to avoid confusion
with the parity check matrix. We will use R = R1R2 . . . Rn to denote Hadamard
rotation of all the n qubits in q.

The quantum codewords in the case of phase noise are |cu〉 = R|u ∈ C〉 where C
is a classical error-correcting code. An ancilla is prepared in the state |0〉a, and the
syndrome extraction operation is RXOR(H)

q,a R where H is the parity check matrix of
C. This can be understood as exactly the same code and extraction as the previous
example, only now all operations are carried out in the basis {R|0〉, R|1〉} instead of
{|0〉, |1〉}.

The simplest example of a phase-error-correcting code is a single-error-correcting
code using three qubits. The two quantum codewords are

R|000〉 = |000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉,
R|111〉 = |000〉 − |001〉 − |010〉+ |011〉 − |100〉+ |101〉+ |110〉 − |111〉,

where the normalization factor 1/
√

8 has been ommitted. An equivalent code is one
using codewords R(|000〉 ± |111〉) (Steane 1996b).
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7. Correcting general quantum noise

To correct bit errors Xx, we have seen that classical coding and correction methods
can be translated fairly directly into the quantum context, and to correct phase
errors Zz the same ideas are used combined with a basis rotation R. However, so far
a combined error XzZz cannot be corrected, even if it only affects a single qubit.

The code construction and correction method discovered by Calderbank & Shor
(1996) and Steane (1996a, b) works by separately correcting the X and Z errors
contained in a general error operator Ms = XxZz. The essential element in the code
construction is the ‘dual code theorem’ (Steane 1996a):

R
∑
i∈C
|i〉 =

∑
i∈C⊥

|i〉. (7.1)

The normalization has been omitted from this expression in order to make apparent
the significant features; normalization factors will be dropped hereafter since they do
not affect the argument. The content of (7.1) is that if we form a state by superposing
all the members of a linear classical code, then the Hadamard transformed state is
a superposition of all the members of the dual code, which is just another linear
classical error-correcting code. We can correct both X and Z errors by using states
like those in (7.1), as long as both C and C⊥ have good error correction abilities.

The dual C⊥ is defined to be the set of all vectors v satisfying v · u = 0 ∀u ∈ C.
From this it can be deduced that the generator of C is the check matrix of C⊥, and
vice versa. Hence if C = [n, k, d], then C⊥ = [n, n− k, d⊥]. The relationship between
d and d⊥ is non-trivial, but in general if k > 1

2n then d < d⊥.
The quantum codewords of a Calderbank, Shor and Steane (CSS) code are ob-

tained from a pair of classical codes where one contains the dual of the other, C⊥2 ⊂
C1. The first codeword is simply the superposition of all the members of C⊥2 (right-
hand side of (7.1)). The other codewords are equal to other subsets of C1 obtained
by displacing C⊥2 by linearly independent members of C1:

|cu〉 =
∑
i∈C⊥2

|i+ u〉, (7.2)

where u 6∈ C⊥2 , u ∈ C1 and C⊥2 ⊂ C1. A particularly interesting case is when
C2 = C1, that is, the code C1 ≡ C contains its own dual. Since C = [n, k, d] and
C⊥ = [n, n−k, d⊥], the number of linearly independent u which generate new states
is k − (n − k) = 2k − n. We can construct 22k−n orthonormal quantum codewords,
which represent a Hilbert space large enough to store 2k − n qubits. We will show
that the resulting code can correct all errors of weight less than 1

2d. The parameters
of the quantum code are thus [[n, 2k − n, d]].

To correct a CSS code obtained from a classical code C = [n, k, d], C⊥ ∈ C we
introduce two ancillae a(x) and a(z), each of n− k qubits, prepared in the state |0〉.
The syndrome extraction operation is

(RXOR(H)
q,a(z)R) XOR(H)

q,a(x), (7.3)

where H is the check matrix of C. The proof that this works correctly for all errors
Ms = XxZz of weight less than 1

2d is left as an exercise for the reader. It is straight-
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forward through use of the relations

XxZz = (−1)x·zZzXz, (7.4)

XOR(H)
q,a Zz = Zz XOR(H)

q,a , (7.5)

RXs = ZsR, (7.6)

R
∑
i∈C⊥

|i+ u〉 =
∑
i∈C

(−1)i·u|i〉, (7.7)

where the latter follows from (7.1) and (7.6).
The simplest CSS code is obtained from the [7, 4, 3] Hamming code given at the

end of § 4. This is single-error-correcting and contains its dual, and therefore leads
to a single-error-correcting quantum code of parameters [[7, 1, 3]]. The two codewords
are (cf. (4.5))

|c0〉 = |0000000〉+ |1010101〉+ |0110011〉+ |1100110〉
+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉, (7.8)

|c1〉 = X1111111|c0〉. (7.9)

8. Generalization: stabilizer codes

Quantum codewords are multiple-qubit entangled states with many symmetry prop-
erties. For example, the codewords of a CSS code are eigenvectors of all operators of
the form XaZb for a, b ∈ C⊥, with eigenvalue 1.

Proof . If |i〉 is a product state, then Zb|i〉 = (−1)b·i|i〉. If b ∈ C⊥, then b · i = 0
∀i ∈ C, therefore, Zb|i〉 = |i〉. A CSS quantum codeword |cu〉 is a superposition
of states |i ∈ C〉, therefore Zb|cu〉 = |cu〉. A similar argument applies for Xa, using
Xa = RZaR. �

The argument just given points to a way to generalize the theory of construction
of quantum error-correcting codes. The central ideas were discovered independently
by Gottesman (1996a) and Calderbank et al . (1997); the latter authors developed
the most general treatment which is elaborated in Calderbank et al . (1996) (see
also Steane 1996d). A QEC code can be defined to be an orthonormal set of states
which are simultaneous eigenstates, with eigenvalue 1, of all the operators in a group
H called the stabilizer of the code. For ‘additive’ codes, the stabilizer has n − k
linearly independent members, all of the form XxZz; these error operators generate
the stabilizer group. For a CSS code they are {XhZ0,X0Zh} where h is a row
of the parity check matrix of the associated classical code. For orthogonal (non-
degenerate) codes, the set of correctable errors S is any set with the property that
M†sMt anticommutes with a member of H, for all members Ms,Mt ∈ S.

Proof . where H ∈ H is the anticommuting operator (Gottesman 1996a),

〈u|M†sMt|v〉 = 〈u|M†sMtH|v〉 = −〈u|HM†sMt|v〉 = −〈u|M†sMt|v〉, (8.1)

therefore 〈u|M†sMt|v〉 = 0, so the code conditions (3.6), (3.7) are satisfied. �
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The simplest useful code which is not a CSS code is the [[5, 1, 3]] code, the sta-
bilizer group of which is generated by {X11000Z00101,X01100Z10010,X00110Z01001,
X00011Z10100}. Since this code permits correction of all error operators of weight
one or zero, it is a ‘single-error-correcting code’, and the minimum distance is 3
(Bennett et al . 1996b; Laflamme et al . 1996; Calderbank et al . 1997).

9. The power of error correction

We have now developed quite general methods to find recoverable quantum states
and the associated syndrome extraction operation. Although the CSS construction is
not the most general, it is powerful because it proves the existence of, and allows the
construction of, efficient codes, in the following sense. A standard result of classical
coding theory is the Gilbert–Varshamov bound (MacWilliams & Sloane 1977), which
states that there exists a linear [n, k, d] classical code provided

2k
d−2∑
i=0

(
n− 1
i

)
< 2n. (9.1)

It can be shown further that there exists a linear [n, k, d] code containing its own dual
provided both it and the dual satisfy the bound. This means that for large n, k, d,
the rate k/n of a CSS code can exceed a finite bound as n→∞ with fixed d/n:

k/n > 1− 2H(d/n). (9.2)

Suppose the qubits of a quantum computer or communication channel are subject
to independent noise. In this case we can define a probability p that after a fixed
time any qubit will suffer an error (X,Y or Z). The precise meaning is that p is
the probability that when the syndrome is measured, the computer’s state will be
projected onto a Hilbert space which differs from the recoverable Hilbert space by a
rotation X,Y or Z applied to any chosen qubit. In the case of spontaneous emission,
p = 3(1−e−Γt). For large n, the number of qubits which are found to be erroneous will
be close to the mean np. The probability that more than (1+ε)np qubits are erroneous
tends to zero as n→∞, for any ε > 0, by the law of large numbers. Therefore error
correction is almost certain to succeed, for large n, as long as d > 2np(1 + ε). Since
k/n can exceed the Gilbert–Varshomov bound, we can achieve the required distance
without needing k/n to become smaller and smaller as n increases. This argument
is closely related to Shannon’s main theorem in classical information theory.

To estimate the success of QEC with finite resources, we need to calculate the effect
of those error operators in (3.1) which are not correctable, for a given QEC code. One
must always design the code to fit the noise, so that the uncorrectable errors are the
least likely. We have concentrated on the case of t-error correcting codes, designed
to cope with independent noise, in order to illustrate the methods. A useful measure
of the degree to which a state has been successfully recovered is the fidelity f of the
recovered state compared with the state before the noise occurred. Since QEC causes
all the correctable error operators to have the same effect on q as the identity, the
fidelity f is of order f = 1−P , where P is the probability of an uncorrectable error.
For a t-error-correcting code, and independent noise, the most likely uncorrectable
errors are those which affect t+ 1 qubits, so P ' C(n, t+ 1)pt+1(1− p)n−t−1 where
p � 1 is the single-qubit error probability defined in the previous paragraph, and
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C(n, x) is a binomial coefficient, C(n, t+1) ' nt+1/(t+1)! for n� t. Thus for small
p and large n,

f ' 1− (np)t+1/(t+ 1)!. (9.3)

Although t-error-correcting codes are not designed primarily to cope with system-
atic errors (noise affecting many qubits together), they nevertheless still perform well
under some systematic effects. For example, the noise operators in the code stabi-
lizer, which can have large weight, do not change the codewords at all. In practice,
quantum computers and communication channels will be subject to a combination of
systematic and uncorrelated noise. To deal with this situation different QEC codes
can be combined, borrowing methods from classical coding theory, such as code
concatenation (Knill & Laflamme 1996).

10. Discussion and recent developments

Quantum error correction is an information-theoretic result. That is to say, QEC does
not allow us to protect all the degrees of freedom of a quantum system from noise.
Rather, it allows us to protect the quantum information stored in a quantum system.
Also, QEC is not a simple experimental tool, since it uses quantum information
processing (syndrome extraction and recovery) in order to combat noise. However,
even taking these considerations into account, we have a powerful result. This is
illustrated by two apparently paradoxical truths.

Suppose a third party supplies me with a single qubit in some arbitrary quantum
state a|0〉 + b|1〉 unknown to me. I then cause this qubit to undergo a specific con-
trolled interaction with four others initially prepared in |0〉. The following is now
possible: I can invite you to choose any one of the five qubits, and change its state
in any manner you choose, including measuring it or otherwise entangling it with
other systems. You do not need to tell me which qubit you changed. I can neverthe-
less extract from the five qubits exactly the single-qubit state a|0〉 + b|1〉 I started
with. The large perturbation you introduced had no effect at all on the stored quan-
tum information! This is achieved by means of the [[5, 1, 3]] single-error-correcting
quantum code.

Suppose a quantum computer is constructed from qubits which all undergo spon-
taneous decay with lifetime τ (e.g. the |1〉 state decays to the |0〉 state). This decay
could be electromagnetic, or radioactive, or any such process which it is impossible
to influence unless prodigious experimental efforts are made, which we assume are
not attempted. We take these unstable qubits to be the only type available, they
are used both for the computer and for any ancillae required for QEC. Such a com-
puter could nevertheless perform a quantum computation (with success probability
of order 1), relying on sustained interference effects involving, say, 1000 qubits, in
which the quantum coherence was preserved during a time of order 104τ . Since we
cannot influence the decay process, this means that quantum coherence is preserved
even though every qubit involved has spontaneously decayed (and been re-excited)
about 10 000 times!

Whereas the first paradoxical result follows directly from the coding theory dis-
cussed in this paper, the second is less obvious and requires the further concepts of
fault-tolerant computing. The main ideas were introduced by Shor (1996), and sub-
sequently generalized by several authors (see Preskill 1998, and references therein).
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The fault-tolerant methods permit syndromes to be extracted reliably even though
every quantum gate and every qubit is noisy. The example figures quoted are based
on the fault-tolerant method described in Steane (1997a), using the [[55, 1, 11]] code.
This is a t = 5-error-correcting code, using n = 55 qubits to store each logical qubit
required for the quantum computation.

The main points of the analysis in Steane (1997a) are as follows. The computer
q is repeatedly corrected. Each complete recovery operation (syndrome extraction
followed by correction) takes a time TR � τ , so the bit-error probability per qubit
per recovery time is p1 = 2(1− exp(−TR/τ)) ' 2TR/τ , where the factor two instead
of three is because on average two-thirds of the errors need correcting by each ancilla
ax, az. In the method of Steane (1997a), on the order of 2n(t + 1) = 660 quantum
gates are required to extract a syndrome for each 55-bit block in the computer.
These are carried out one after another (not several in parallel), so TR = 660Tg,
where Tg is the time required for a single gate. Error propagation in the syndrome
extraction networks couples errors from the ancilla into the block being corrected
(and vice versa). It is found that this doubles the accumulation of errors in q, so
the error probability per qubit in q per recovery time is p = 2640Tg/τ . We consider
the case that Tg = 1.5 × 10−7τ , giving p ' 4 × 10−4. The fidelity of the state of
any logical qubit just after the jth recovery, compared with the state just after the
j− 1th recovery, is f1 ' (1− 1.6× 10−13)2, using equation (9.3), where the power of
two accounts for separate extraction of X and Z syndromes. We correct all the 1000
logical qubits in parallel, so the fidelity of the state of the whole computer after the
j − 1th recovery, compared with the jth, is f ' f1000

1 . Since this is independent of
j, the fidelity compared with the computer’s initial state is f j , which falls to 0.9 at
j ' 3.5 × 108. The total computation time is then jTR ' 3 × 104τ , in comfortable
agreement with the claim.

A similar analysis can also include the effect of additional noise associated with
each quantum gate. If the gate noise is of the order of n times the noise per resting
qubit per gate time, it is found that the conclusions are not greatly changed. This
represents a gate failure probability of order 10−5, which is experimentally achievable.
It is noteworthy that the block CSS codes perform better than concatenated codes
even for such long computations (the example given would permit factorization of
130-digit numbers using Shor’s algorithm).

A useful physical intuition into QEC is to think of it as a type of cooling, only
instead of cooling towards a particular state in Hilbert space, one cools towards
a particular subspace of Hilbert space. Cooling is achieved by the flow of entropy
from a hotter body to a colder one, and in QEC entropy flows from the system q
to the ancilla. The method relies on the low-entropy preparation of the ancilla state
(Aharonov & Ben-Or 1996; Steane 1997b).

The author is supported by the Royal Society and by St Edmund Hall, Oxford.
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Discussion

P. Marcer (BCS Cybernetic Machine Group, Keynsham, UK ). Is noise an enhancer
of coherence, as is the case under the appropriate conditions in, for example, stochas-
tic resonance or superresolution imaging? In superresolution in quantum holography,
for example, increasing noise or inhomogeneity can produce a new quantum holo-
graphic superposition which increases the resolution of the holographic information
previously available. That is, under the right conditions, i.e. phase conjugation, it is
self-correcting in the presence of noise.

Th. Beth (University of Karlsruhe, Germany). Such methods of ‘orthogonal imag-
ing’ to reduce the signal-to-noise ratio (Harwit & Sloane 1979) do not apply in the
quantum regime. These methods essentially use the L2-norm of probabilities after
measurement, but are not possible in the unitary evolution of a quantum computer
(see Beth et al . 1998, ch. 8).

The correction of systematic, ‘all over’ phase errors is done classically by filters.
In quantum computation, however, this requires the transform of phases into kets.
A method for doing this has recently been proposed by Kitaev (1995).
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The technique of the Hadamard transform duality theorem was originally invented
by Gleason and MacWilliams. It is Dr Steane, however, who saw the ingenious duality
of bit-flips (σx) and phase-flips (σz) in quantum error-correcting code.

A. M. Steane. Professor Beth has answered Professor Marcer’s comment. I will
add that, whereas I am not familiar with the method described in holography, I
suspect that the information storage going on here is essentially classical in nature.
Although holography can store complete information about light fields, this is only
possible for sufficiently strong fields which can in effect be ‘cloned’, i.e. many ‘copies’
of the quantum state of the light are available to form the hologram. Having said
that, quantum error correction typically makes use of imperfect measurements on the
relevant system, and I would not rule out the possibility that there exist situations
in which introducing noise into a measuring device may improve its usefulness.

Picking up on the comment by Professor Penrose concerning systematic phase
error, it is noteworthy that although codes are not necessarily designed with this
type of error in mind, they nevertheless can perform very well under such noise (see
the comment at the end of § 9).

Finally, Professor Beth is quite right in stressing that the connection between
dual codes and the Hadamard transform is a well-known part of classical error-
correction theory. The important new insight was, I think, to form a quantum state
by superposing all the members of a linear code, and use the Hadamard transform
to make intuitively clear that such a state will transform in a useful way under
phase-flips as well as bit-flips.
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